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Dynamical signatures of freezing: Stable fluids, metastable fluids, and crystals
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Mean squared displacements and velocity auto correlation functions are calculated using molecular dynam-
ics for hard spheres under a range of conditions (i) for the equilibrium fluid below freezing; (ii) for the
metastable fluid above freezing; and (iii) for the hard sphere crystal, both in the metastable region between
freezing and melting, and in the stable region above melting. In addition, simulations are carried out for a
metastable Lennard-Jones system. The results confirm recent studies that indicated the disappearance of the
classical Alder long-time tail, and show that they apply to systems other than the metastable hard sphere fluid.
The implications of these results for our understanding of crystallization and the glass transition are discussed.
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I. INTRODUCTION

A simple measure to characterize the dynamical motion in
a fluid state at the single particle level, is the mean square
displacement (MSD) [1], which has been studied extensively
for both equilibrium and undercooled liquids [2,3]. An alter-
native measure sometimes used to characterize dynamical
motion is the velocity autocorrelation function (VAF), Z(z).
Studies of the VAF are less extensive, and have mainly fo-
cused on the long-time tail for equilibrium fluids [4-7]. This
long-time tail shows a power law behavior Z(r) ~Ar3/?,
where the amplitude A is positive, as predicted by Stokes for
a macroscopic sphere undergoing nonsteady motion in a con-
tinuum fluid, and as required by local conservation of mo-
mentum laws, which lead to constitutive relations associated
with viscous flow. This behavior was first discovered in mo-
lecular dynamics simulations [4,5] and later confirmed by
experiment [8,9]. While the mean square displacement and
the velocity autocorrelation function contain in principle the
same information, the details which are exposed by these
quantities are quite different [10,11].

Recently, we presented molecular dynamics calculations
of the VAF for hard sphere fluids over a wide range of vol-
ume fractions covering both the equilibrium and metastable
regions [10]. In that work, we demonstrated that there is a
qualitative difference in the character of the VAF as the
freezing volume fraction is traversed; below ¢, the long-time
behavior follows the classic Z(f) ~ A2 behavior; however,
above ¢y, the long-time behavior changes to Z(1) ~—-Ar>"2,
i.e., the amplitude is negative (decay from below), and the
power law goes as —5/2. Qualitatively similar behavior has
been observed experimentally [11]. These results for the
metastable fluid are incompatible with a diffusing transverse
momentum current—i.e., flow does not fully develop. To see
these effects the correlation functions must be computed over
a range of time scales and with a degree of statistical sam-
pling, which was not possible more than twenty years ago
when the majority of studies on velocity autocorrelation
functions were carried out.
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Given the importance of these results, this paper expands
on and validates the previous work in several ways. First, we
calculate the speed of sound and demonstrate that traversal
of the simulation box occurs sufficiently slowly that it does
not contribute to the results; second, we conduct simulations
with different system sizes to exclude finite size effects;
third, we present the details of the statistical uncertainty in
our results; fourth, we present further evidence of the funda-
mental change that occurs at freezing; fifth, we show that the
observed effects are not peculiar to the hard sphere system,
but occur also for a metastable Lennard-Jones fluid. Finally,
we demonstrate that the velocity autocorrelation function
contains important qualitative details that have not been no-
ticed in previous studies, which concentrated on the long-
time tails; further, these details are not readily apparent from
the mean square displacement [10,11].

II. THEORY
A. Definitions

A simple measure to characterize the dynamical motion in
a fluid state, at the single particle level, is the mean square
displacement (MSD)

(Arf(0) = (|rn) - x,(0)), (1)

where r;(7) is the position of the center of mass of the ith
particle at time ¢ [1]. This is directly related to the velocity
autocorrelation function (VAF) (in three Cartesian dimen-
sions)

2) = 3mB, (1) -¥,0)), @)

where m is the atomic mass, 8=1/kgT, kz is Boltzmann’s
constant, T is the temperature, and v;(¢) is the velocity of the
ith particle at time ¢. Assuming time translation invariance,
these two measures Egs. (1) and (2) are exactly related by the
following pair of equations:

(AP (1)) = 6IZTJ ds(t—s)Z(s),

0
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Z(t) =

m d*
—(AF(1)). 3
6kBTdt2< i (1) 3)
At long times the mean square displacement becomes diffu-
sive, allowing the diffusion coefficient to be measured by
using the Einstein expression

2
D= limM.

(—w Ot

(4)

Alternatively the long-time self-diffusion coefficient can be
measured using the Green Kubo expression

D= kLfo diZ(1). (5)

m Jo

B. Speed of sound

In order to demonstrate that the periodic boundaries are
not introducing artifacts, we calculate the speed of sound for
the simulated systems. The low frequency speed of sound v,
can be calculated from the equation of state, and is given by

[12]
V2(d N{(d
I AR
‘ M\av), "M\dp);

where y=c,/cy is the ratio of specific heats; V is the total
volume of the system; M =Nm is the total mass of the sys-
tem; p=N/V is the number density; p is the pressure and 7 is
the temperature. We will now derive an expression for hard
particles (here the internal energy H, is equal to the total
kinetic energy, thus (dHy/dV);y=(dH,/dp);=0) for which
the specific heats are given by,

dH,\ 3
CV_VCV E _ENkB,
1%
dl v
C,=Vc,= E“ =Cy+p E“ R (7)
p p

where the enthalpy is I=Hy+pV. Using the second law
equality, A=H,—TS, where S is the entropy and A is the
Helmholtz free energy, it follows that

()G —il5) /), o
dp/r T\dp/r T\dp/r dp/r
and by combining Egs. (7) and (8) with the Maxwell relation

(av/dT),=—(dS/dp)r and the expression for the thermody-
namic pressure p=—(dA/dV);=(p/V)(dA/dp)r we obtain,

oy, 22 (d_P) ©)
Cy 3p dp/r

where Z=pV/NkgT is the compressibility factor. This yields
the expression for the speed of sound,

N|(d 2
vf=—[<—p> +—z’3]. (10)
Mi\dp/r 3 p

It is convenient to express Eq. (10) in dimensionless units
giving,
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. dp” 2 p
vf=( p*) + =72 (11)
‘ dp /1

where v =v\m/kgT, p"=pa>/kgT, and p"=po°.

III. METHODS
A. Simulations

Hard spheres are often used as a simple, yet realistic
model of the liquid state [13]. While the structure of a hard
sphere fluid has no temperature dependence, it does show a
strong dependence on density (or volume fraction, i.e., the
volume of all the spheres divided by the total system vol-
ume), with a first order fluid to solid phase transition at the
freezing volume fraction, ¢f=0.494, and a coexistence re-
gion between ¢, and the melting volume fraction, ¢,
=0.545 [14]. At volume fractions above ¢, a face centered
cubic (fcc) crystal is the equilibrium phase [15], but long-
lived metastable states are observed experimentally, up to a
glass transition at ¢,=0.57 [16]. In computer simulations of
one component hard spheres the fluid crystallizes very rap-
idly above the freezing volume fraction [17]. This can be
avoided by the use of a binary mixture which has a freezing
volume fraction of ¢;=0.506 and a melting volume fraction
of ¢,,=0.545 [17,18].

Molecular dynamics simulations were performed using
periodic boundary conditions. The system size was N
=10976 particles unless otherwise stated. Some runs were
conducted with N=5 X 10° particles to test for finite size ef-
fects. A number of systems were studied: (i) the one compo-
nent equilibrium hard sphere fluid (volume fraction below
freezing, ¢»<<0.494); (ii) the two component metastable hard
sphere fluid (¢>0.506); (iii) the one component metastable
hard sphere fcc crystal (0.494<$<<0.545); (iv) the one
component stable hard sphere crystal (¢>0.545); and (v) a
truncated and shifted Lennard-Jones liquid.

The two component mixture was used to suppress freez-
ing, and allow for studies of the metastable state [17]. This
mixture consisted of a 1:1 mixture of two different sphere
sizes with a diameter ratio of 0.905. Figure 1 shows the
magnitude of the VAF at ¢=0.52 for each species, as well as
the average VAF (calculated by treating the mixture as a
quasi-one-component system). As can be seen there is little
difference between the results, and therefore, all results re-
ported here for the binary system show the average VAF.

The truncated Lennard-Jones simulations were performed
using the Gaussian isokinetic equations of motion [19] and
integrated with a fourth order Runge-Kutta algorithm. A time
step of Ar=0.002 was used with a cutoff radius of 2.5 o, and
the system consisted of 10 976 particles. The pair potential is

12 6
u(rij)=4s[(3) - <5> —b}, (12)
rij rij

where r;; is the distance between the centers of the ith and jth
particles. The potential is shifted at the cutoff radius r.=2.5
by setting the value of b such that u (2.5)=0.

Time averaging was combined with ensemble averaging
to obtain the necessary statistics. The correlation functions
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FIG. 1. (Color online) The log-log plot of the absolute values of
the partial VAFs for the binary mixture at the volume fraction of
$=0.52, showing the VAFs calculated from the small species par-
ticles Z,, the large species particles Z,, and the average or indis-
criminate VAF Z,,,.

were built up from several sets with different time spacings
to obtain a coarse quasilogarithmic time scale. The velocity
autocorrelation function was constructed from ensembles of
50 independent simulations. For some runs, improved statis-
tics were obtained by averaging an ensemble of 500 indepen-
dent simulations. The particle diameter o is the length unit,
the time unit is oVm/ €, and the temperature unit is €/kg. In
the case of hard spheres (whose equilibrium behavior is
athermal) the temperature is set such that kzT=e€; for the
Lennard-Jones liquid € is a parameter which appears in the
potential Eq. (12).
B. Finite size effects

To test for finite size effects, we combine the known equa-
tion of state [20,21] (which very accurately reproduces the
pressures obtained from all our simulations) with Eq. (11),
and then plot the time taken for a sound wave to cross the
simulation cell as a function of the volume fraction ¢. This is
shown in Fig. 2 for the system sizes of N=10976 and N
=5 X 10°, for both the one component system and the binary
mixture. Figure 3 shows the magnitude of the VAF (on a
log-log graph) using both system sizes for: (a) the single
component system at the lowest volume fraction studied ¢
=0.15; and (b) the binary system at the highest volume frac-
tion studied ¢=0.58.

As can be seen in Fig. 2, for the small system (N
=10976), the time to cross the box at the highest volume
fraction studied (¢=0.58) corresponds to t=1. Figure 3
shows that at =1, the decay of the VAF is almost complete.
At the lowest volume fraction (¢=0.15) the time to cross the
box corresponds to #=15. Again, Fig. 3 shows that for this
system the VAF has decayed into the noise by the time the
sound wave has crossed the box.

For the larger N=5 X 10° system it takes the sound wave a
factor of 3.6 longer to cross the cell than for the smaller N
=10 976 system, so clearly the sound wave cannot affect the
results for this case—the fact that there is no systematic dif-
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FIG. 2. (Color online) Shown is the time it takes a low fre-
quency sound wave to traverse the simulation cell. The number of
particles is kept fixed (at N=10 976 or N=5 X 10°) and at the high-
est volume fraction the box length is smallest and the speed of
sound is fastest, therefore the traversal time is smallest. For dilute
fluids reducing the volume fraction results in the VAF decaying
more slowly and this effect dominates at low enough volume frac-
tion. Thus, the speed of sound crossing the box before the VAF
decays, becomes a significant problem at volume fractions below
¢=0.15.

ference between the VAFs for the small and large system
sizes (as shown in Fig. 3), demonstrates conclusively that
there are no finite size effects in any of the systems studied
over this range of volume fractions. However, the time on
which the VAF decays grows longer as the volume fraction is
reduced, so finite size effects cannot be discounted for vol-
ume fractions below ¢=0.15. Finally, we note that, unsur-
prisingly, there is little difference in the speed of sound be-
tween the binary mixture and one component fluid.

IV. RESULTS AND DISCUSSION

Our recent study on the VAFs of hard sphere fluids [10]
showed that when a fluid is undercooled a long-time tail
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FIG. 3. (Color online) The log-log plot of the absolute values of
the VAFs |Z(7)| calculated from hard sphere fluid simulations with
N=10976 and N=5X 10’ at volume fractions of ¢=0.15 and ¢
=0.58. The numbers in the legend are the volume fraction, s denotes
the N=10976 system, and b denotes the N=5X 10° system.
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FIG. 4. (Color online) This is a summary of typical results as
reported in [10] for hard sphere fluids. The one component fluid is
shown for the volume fractions of ¢=0.15, 0.41, and 0.45 which
are all below the freezing volume fraction ¢;=0.494. The volume
fraction of ¢=0.52 is also shown for the binary fluid which is above
the freezing volume fraction ¢=0.506. In (a) the VAF Z(z) is plot-
ted against a logarithmic time axis. In (b) the logarithm of the
absolute value of the VAF In(|Z(¢)|) is plotted against a logarithmic
time axis.

emerges that, in contrast to equilibrium fluids, decays toward
zero from below, i.e., Z(r) <0. The behavior of the VAF is
summarized in Fig. 4 for selected volume fractions represen-
tative of the different features observed. The data is dis-
played on a semilogarithmic graph in Fig. 4(a), and a log-log
graph in Fig. 4(b). The dilute fluids (represented by ¢
=0.15) are observed to decay monotonically before finally
exhibiting the classic Alder long-time tail Z(¢) ~ A2, and it
is observed that Z(z) >0 at all times. As the volume fraction
is increased, the viscoelasticity of the fluid increases, and the
inflection point in the VAF becomes more pronounced until a
local minimum appears which may be clearly seen in the
figure for the volume fraction of ¢=0.41. At this volume
fraction it is observed that the nonmonotonic decay is fol-
lowed by the Alder long-time tail. Above the volume fraction
of ¢=0.416, but below freezing ¢,=0.494 (represented here
by ¢=0.45), the VAF becomes negative, then positive again
(indicated by two minima on the log-log graph), and finally
exhibits a long-time Alder tail. At the freezing volume frac-
tion and above, the Alder long-time tail apparently disap-
pears, as previously demonstrated for both the single compo-
nent and binary systems [10]. For the deeply undercooled
fluids (for which we use the binary hard sphere mixture), at
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FIG. 5. (Color online) A log-log plot displaying the error in the
long-time tail of the hard sphere fluid for selected volume fractions.
From left to right, the volume fractions are 0.48, 0.513, and 0.56,
respectively. The error bars (one standard error) are shown for every
third data point at long times. The straight lines are power law fits
with nominal exponents of —3/2 and —5/2. For clarity the 0.513
data has been shifted along the time axis by a factor of 4 and the
0.56 data by a factor of 25.

long times the VAF decays from a negative value, with a
long-time tail Z(f) ~—-Ar"'2. For the undercooled fluids the
elastic recoil is strong (as evident by Z(r)<0), perhaps
strong enough to completely consume the long-time diffu-
sive modes.

Because the VAFs were obtained from ensembles of simu-
lations, we were able to calculate estimates of the standard
error (i.e., a confidence interval of 66%) for the VAF. The
statistical error is only significant when the VAF is very
small and systematic error is only significant at the highest
volume fractions, ¢=0.56, where the relaxation time of the
fluid is very large. The long-time data sets for selected vol-
ume fractions, with error bars, are plotted in Fig. 5. Close to
the freezing point it is difficult to fit a long-time power law.
As we showed previously [10] the long-time decay of the
VAF appears to be exponential at the freezing point. For this
reason the uncertainty in the long-time tail is greatest close
to freezing. The data at the highest volume fraction 0.56
furthest from the freezing point, was constructed from an
ensemble that had a factor of ten fewer runs than the other
two shown volume fractions. From the graph (Fig. 5), for the
volume fraction of ¢=0.48, we estimate that the power law
decay has an exponent of 1.5+0.3. For the lower volume
fractions that we studied, this exponent can be determined
with much greater accuracy. For the other two plotted vol-
ume fractions (0.513 and 0.56) we estimate a power law of
2.5+0.3. This estimate is consistent with the data presented
in reference [10] for the volume fractions of 0.52, 0.54, 0.56,
and 0.58. While the estimate of 2.5 is consistent with our
data, in the future it is possible that improved data may lead
to a refinement of this value. Future theoretical work may
also be able to shed light on this issue.

For completeness, we also conducted simulations on the
single component system in the crystal phase above freezing
in both stable (¢=0.55,0.58) and metastable regions (¢
=0.51,0.52,0.53) (Fig. 6). The long-time behavior remains
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FIG. 6. (Color online) The log-log plot of the absolute value of
the VAF for the crystal phase at various volume fractions above
freezing. As for the metastable fluid, the VAFs decay to zero from
below, although here the exponent is of the order of 3.5~4.

negative in the crystal phase, but has a different exponent
(between 3.5 and 4). Clearly the exploration of space in the
crystal is more strongly retarded than in the metastable fluid.

We measure three times which characterize these obser-
vations at moderate to high volume fractions: first, the time
at which the local minimum appears in the VAF (¢=0.41);
second, the time at which the VAF crosses the abscissa and
first becomes negative (¢>0.416); and finally, the time at
which the VAF first becomes positive again after being nega-
tive (0.416< $<<0.494). The results are shown in Fig. 7 for
both single component (fluid) and binary (metastable fluid)
systems. It can be seen that the time on which the VAF first
becomes negative and the time on which the local minimum
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FIG. 7. (Color online) Characteristic times for the VAF as func-
tions of volume fraction: (i) the time when the first minimum in the
VAF occurs (minimum in legend); (ii) the time when the VAF
crosses from positive to negative (goes negative in legend); (iii) the
time when the VAF crosses from negative to positive (goes positive
in legend). The one component hard sphere fluid was used for vol-
ume fractions below freezing ¢;=0.494 and the binary hard sphere
fluid was used for volume fractions above freezing ¢=0.506.
Above freezing the VAF is never observed to go positive again,
once it has gone negative.
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FIG. 8. (Color online) The log-log plot of the absolute value of
the VAF for a truncated Lennard-Jones fluid with a fixed number
density p=No>/V=0.936. The temperatures (as given in the legend)
are either side of the freezing temperature 7,=1.06. The under-
cooled liquid never becomes positive, after going negative. The
equilibrium liquid has a second sharp minimum as Z(t) crosses zero
again and becomes positive.

occurs both decrease continuously as the volume fraction is
increased. However, the time at which the VAF becomes
positive again increases sharply as the freezing volume frac-
tion is approached. Previously we have shown how the am-
plitude A in the Alder long-time tail, Z(r) ~ Ar~3/2, apparently
disappears critically, A~ (¢~ @), as the freezing volume
fraction ¢ is approached [10]. These further observations
provide more evidence that the Alder long-time tail disap-
pears precisely at the freezing volume fraction.

To demonstrate that these observations are not peculiar to
hard spheres, we have also investigated what happens to the
VAF at temperatures above and below the freezing tempera-
ture for the truncated Lennard-Jones liquid, Eq. (12). At the
chosen density p=0.936 the freezing temperature is 7=1.06
[22]. Figure 8 shows the VAF at temperatures of 7=0.95 and
T=1.35. The statistical sampling is not sufficient to identify
the Alder tail at the temperature above freezing (T=1.35),
but it can be clearly seen that the VAF becomes negative,
then becomes positive again, the same as for the hard sphere
system at densities just below freezing. For the temperature
below freezing (T=0.95) this is not the case—here the VAF
decays to zero from below, to values so low that noise domi-
nates the estimate. Also observable is a second local peak
between the times #=0.1 and #=1 which is not observed for
any of the hard sphere simulations. This extra peak is inter-
preted as being due to vibrations around local minima in the
energy landscape—such energy minima do not exist for the
hard sphere system. These vibrations may also play a role in
obscuring the Alder tail at the temperature 7=1.35 by caus-
ing it to become apparent at a lower amplitude. Because
these two data sets are very close to the freezing point, we
are unable to meaningfully determine exponents for long-
time power law decays.

Finally we note that in studies of tagged particle motions
in undercooled fluids approaching the glass transition [2,3] it
is typical to measure the MSD Egq. (1) out to very long times,
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FIG. 9. (Color online) (a) Log-log plot of the absolute value of
the VAF at volume fractions of ¢=0.513 and ¢=0.58 for the un-
dercooled binary hard sphere fluid. The sharp minimum occurs
where the VAF crosses zero and becomes negative. (b) The log-log
plot of the MSDs at the volume fractions of ¢=0.513 and ¢
=0.58. The initial short-time ballistic motion has a slope of two
while the long-time diffusive motion has a slope of one. The
stretching or plateau in the MSD may be seen at the higher volume
fraction ¢=0.58.

and then obtain the diffusion coefficient by use of the Ein-
stein expression Eq. (4), or by use of the equation

Ctim A2
D =lim 6dt<Ari (). (13)

1—©

As the glass transition is approached, the diffusion coeffi-
cient D approaches zero and the time on which the Einstein
expression, Eq. (4), becomes accurately representative of the
diffusion coefficient diverges. This means the MSD Eq. (1)
must be calculated out to very long times to obtain meaning-
ful estimates of the diffusion coefficient. Alternatively if Eq.
(13) is used, the data must be collected over a wide enough
time range to obtain an accurate estimate of D and the cal-
culation can only commence after the VAF has fully de-
cayed. Once the VAF has fully decayed, Eq. (3) shows that
the mean square displacement is given by a linear equation
of the form
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(AP (1)) =a +6Dt. (14)

The problem with Eq. (4) is that upon approaching the glass
transition the contribution from the early motion [given by
the constant a in Eq. (14)] does not change strongly, but the
diffusion coefficient D is reduced by many orders of magni-
tude [2,3]. Thus when one gets close enough to the glass
transition Eq. (4) is no longer of practical use, because to use
it the MSD must be measured out to inaccessible delay
times. The Green Kubo expression for the diffusion coeffi-
cient Eq. (5) does not suffer this problem. This assumes the
ability to directly measure the VAF, which is easy in a mo-
lecular dynamics simulation, but less so in experiments and
some forms of Brownian dynamics simulations. This can
only be done for well-aged states which are time translation
invariant, otherwise Eq. (3) is not valid. For glassy states
issues surrounding ergodicity must be addressed by appropri-
ate ensemble averaging.

This practical difference between the two expressions
[Egs. (4) and (5)] provides some insight into what happens to
the mean square displacement upon approaching the glass
transition. To illustrate this, we show the VAFs for the un-
dercooled binary hard spheres at volume fractions of ¢
=0.513 and ¢=0.58 in Fig. 9(a) and the corresponding
MSDs in Fig. 9(b). The most important difference between
the two VAFs [Fig. 9(a)] is that at the higher volume fraction
the VAF becomes negative in a shorter time than it does for
the lower volume fraction. This results in a reduction in the
total area under the curve, for the higher volume fraction,
and in turn a much reduced diffusion coefficient Eq. (5).
However, the two VAFs fully decay on the same time scale.
By contrast, diffusive behavior is delayed by two orders of
magnitude for the ¢p=0.58 system, relative to ¢=0.513 [Fig.
9(b)]. Upon approaching the glass transition, the diffusive
motion takes a very long time to dominate over the initial
motion, which determines the parameter a in Eq. (14), lead-
ing to the long subdiffusive region observed on a logarithmic
plot of the MSD Fig. 9(b). As can be seen, on this type of
plot the VAF has fully decayed long before the MSD has
converged to its long-time slope.

V. CONCLUSIONS

The results presented here confirm recent studies that in-
dicated the disappearance of the classical Alder long-time
tail upon traversing the freezing transition for hard sphere
fluids. Moreover, we have demonstrated that this behavior
applies not only to hard spheres, but also to Lennard-Jones
fluids, and speculate that this behavior is universal. Finally,
we demonstrate that the VAF and the MSD, while comple-
mentary, expose different details of the behavior of atoms
and particles, and that the VAF can be useful for the deter-
mination of the long-time diffusion coefficient for systems
with very slow dynamics in metastable equilibrium.
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